On Jacobi quasi-Nijenhuis algebroids and Courant–Jacobi algebroid morphisms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-derivations and quasi-algebroids

Axioms of Lie algebroid are discussed. In particular, it is shown that a Lie quasi-algebroid (i.e. a Lie algebra bracket on the C∞(M)-module E of sections of a vector bundle E over a manifold M which satisfies [X, fY ] = f [X, Y ] + A(X,f)Y for all X, Y ∈ E , f ∈ C∞(M), and for certain A(X,f) ∈ C∞(M)) is a Lie algebroid if rank(E) > 1, and is a local Lie algebra in the sense of Kirillov if E is...

متن کامل

Characteristic Classes of Lie Algebroid Morphisms

We extend R. Fernandes’ construction of the secondary characteristic classes of a Lie algebroid to the case of a base-preserving morphism between two Lie algebroids. Like in the case of a Lie algebroid, the simplest characteristic class of our construction coincides with the modular class of the morphism. In [4] R. Fernandes has constructed a sequence of secondary characteristic classes of a Li...

متن کامل

ar X iv : 0 80 8 . 41 25 v 1 [ m at h . D G ] 2 9 A ug 2 00 8 Poisson quasi - Nijenhuis structures with background

We define the Poisson quasi-Nijenhuis structures with background on Lie algebroids and we prove that to any generalized complex structure on a Courant algebroid which is the double of a Lie algebroid is associated such a structure. We prove that any Lie algebroid with a Poisson quasi-Nijenhuis structure with background constitutes, with its dual, a quasi-Lie bialgebroid. We also prove that any ...

متن کامل

Quasi-derivations and QD-algebroids

Axioms of Lie algebroid are discussed. In particular, it is shown that a Lie QD-algebroid (i.e. a Lie algebra bracket on the C∞(M)-module E of sections of a vector bundle E over a manifold M which satisfies [X, fY ] = f [X, Y ] + A(X,f)Y for all X, Y ∈ E , f ∈ C∞(M), and for certain A(X,f) ∈ C∞(M)) is a Lie algebroid if rank(E) > 1, and is a local Lie algebra in the sense of Kirillov if E is a ...

متن کامل

Harmonic Morphisms and the Jacobi Operator

We prove that harmonic morphisms preserve the Jacobi operator along harmonic maps. We apply this result to prove infinitesimal and local rigidity (in the sense of Toth) of harmonic morphisms to a sphere. 1. Harmonic morphisms Harmonic maps φ : (M, g) → (N, h) between two smooth Riemannian manifolds are critical points of the energy functional E(φ,Ω) = 1 2 ∫ Ω |dφ| dvg for any compact domain Ω ⊆...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2010

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2010.02.011